3.1.34 \(\int \frac {\coth (x)}{\sqrt {a+b \coth ^2(x)}} \, dx\) [34]

Optimal. Leaf size=29 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}} \]

[Out]

arctanh((a+b*coth(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3751, 455, 65, 214} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[x]/Sqrt[a + b*Coth[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Coth[x]^2]/Sqrt[a + b]]/Sqrt[a + b]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\coth (x)}{\sqrt {a+b \coth ^2(x)}} \, dx &=\text {Subst}\left (\int \frac {x}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\coth (x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\coth ^2(x)\right )\\ &=\frac {\text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \coth ^2(x)}\right )}{b}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 29, normalized size = 1.00 \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]/Sqrt[a + b*Coth[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Coth[x]^2]/Sqrt[a + b]]/Sqrt[a + b]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(113\) vs. \(2(23)=46\).
time = 0.83, size = 114, normalized size = 3.93

method result size
derivativedivides \(\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\coth \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{1+\coth \left (x \right )}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\coth \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{\coth \left (x \right )-1}\right )}{2 \sqrt {a +b}}\) \(114\)
default \(\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\coth \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{1+\coth \left (x \right )}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\coth \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{\coth \left (x \right )-1}\right )}{2 \sqrt {a +b}}\) \(114\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)/(a+b*coth(x)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/(a+b)^(1/2)*ln((2*a+2*b-2*b*(1+coth(x))+2*(a+b)^(1/2)*(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2))/(1+coth
(x)))+1/2/(a+b)^(1/2)*ln((2*a+2*b+2*b*(coth(x)-1)+2*(a+b)^(1/2)*(b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2))/(
coth(x)-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(coth(x)/sqrt(b*coth(x)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 333 vs. \(2 (23) = 46\).
time = 0.40, size = 1298, normalized size = 44.76 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(a + b)*log(-((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8
- 2*(2*a^3 + a^2*b)*cosh(x)^6 - 2*(2*a^3 + a^2*b - 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)
*cosh(x)^3 - 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2
*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 - 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*
cosh(x)^5 - 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b
+ 3*a*b^2 + b^3 - 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 - 15*(2*a^3 + a^2*b)*cos
h(x)^4 - 2*a^3 - 3*a^2*b + b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)
^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 - 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 - a^2)*sinh(x)^4 + 4*(5*a^
2*cosh(x)^3 - 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 - 18*a^2*cosh(x)^
2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*a^2*cosh(x)^5 - 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b
 - b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh
(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7 - 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*
b^2 + b^3)*cosh(x)^3 - (2*a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)
^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + sqrt(a +
b)*log(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*(a + b)*cos
h(x)^2 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b)*sqrt(((a + b)*cosh
(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 + b*cos
h(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)))/(a + b), -1/2*(sqrt(-a - b)*arctan(sqrt(2
)*(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a - b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sin
h(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*si
nh(x)^3 + (a^2 + a*b)*sinh(x)^4 - (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 - 2*a^2 - a*b + b^2
)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 - (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + sqrt(-
a - b)*arctan(sqrt(2)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)
*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^2 + 2*(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 + a + b)))/(a + b)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\coth {\left (x \right )}}{\sqrt {a + b \coth ^{2}{\left (x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)**2)**(1/2),x)

[Out]

Integral(coth(x)/sqrt(a + b*coth(x)**2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 196 vs. \(2 (23) = 46\).
time = 0.48, size = 196, normalized size = 6.76 \begin {gather*} -\frac {\frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} - 2 \, a e^{\left (2 \, x\right )} + 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} + \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{\sqrt {a + b}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} - 2 \, a e^{\left (2 \, x\right )} + 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{\sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} - 2 \, a e^{\left (2 \, x\right )} + 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{\sqrt {a + b}}}{2 \, \mathrm {sgn}\left (e^{\left (2 \, x\right )} - 1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)/(a+b*coth(x)^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*(log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) - 2*a*e^(2*x) + 2*b*e^(2*x) + a + b))*(a + b)
 + sqrt(a + b)*(a - b)))/sqrt(a + b) + log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) - 2*a*e^(2*x)
 + 2*b*e^(2*x) + a + b) + sqrt(a + b)))/sqrt(a + b) - log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x
) - 2*a*e^(2*x) + 2*b*e^(2*x) + a + b) - sqrt(a + b)))/sqrt(a + b))/sgn(e^(2*x) - 1)

________________________________________________________________________________________

Mupad [B]
time = 1.74, size = 23, normalized size = 0.79 \begin {gather*} \frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {coth}\left (x\right )}^2+a}}{\sqrt {a+b}}\right )}{\sqrt {a+b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)/(a + b*coth(x)^2)^(1/2),x)

[Out]

atanh((a + b*coth(x)^2)^(1/2)/(a + b)^(1/2))/(a + b)^(1/2)

________________________________________________________________________________________